											REVIS	SIONS								
				LTR				DESC	RIPTI	ON			I	DATE	(YY-MM-	DD)	,	APPRO	OVED	
				Α	Add	device	type	02 and	case	outline	e Y. E	ditoria	ıl	04-	04-13		The	omas	M. He	ss
					cnar	nges th	irougn	out	IVN											
Prepared	in accord	ance wit	h ASME	E Y14.24													Vend	or iten	n draw	ving
	in accorda	ance wit	h ASME	E Y14.24													Vend	or iten	n draw	ving
REV	in accord	ance wit	h ASME	E Y14.24													Vend	or iten	n draw	ving
REV PAGE	in accorda	ance wit	h ASME	E Y14.24													Vend	or iten	n draw	ving
REV PAGE REV	in accord	ance wit	h ASME	E Y14.24													Vend	or iten	n draw	ving
REV PAGE REV PAGE REV STA	ATUS	ance wit		E Y14.24	A	A	A	A	A	A			A	A	A	A	Vend	or iten	n draw	ving
REV PAGE REV PAGE REV STA	ATUS				A 2	A 3	A 4	A 5	A 6	A 7	8	9	A 10	A 11	A 12	A 13				ving
PAGE REV PAGE REV STA	ATUS ES	REV	iE	A	2				-	7	_		10	11	12	13	A 14	A 15	A 16	
PAGE REV PAGE REV STA	ATUS ES	REV	EE PREP	A 1	2 Y				-	7	_		10 SU	11 PPL	12	13 NTEF	A 14 R, CO	A 15	A 16	
PAGE REV PAGE REV STA DF PAGE	ATUS ES	REV	EE PREP	A 1	2 Y guyen				-	7	DEF		10 SU	11 PPL	12 / CEI	13 NTEF	A 14 R, CO	A 15	A 16	
PAGE REV PAGE REV STA DF PAGE	ATUS ES	REV	PREP. Tha	A 1 ARED B' anh V. No	2 Y guyen				-	7 TIT I	DEF	ENSI	10 E SU CO	11 PPLY	12 Y CEI MBUS	13 NTEF S, OH	A 14 R, CO	A 15 DLUM	A 16	
PAGE REV PAGE REV STA DF PAGE PMIC N/A	ATUS ES	REV	PREP. Tha	A 1 ARED B' anh V. No	2 Y guyen				-	7 TIT	DEF LE CROC	ENSE CIRCU BUFF	10 E SU CC	PPLY DLUM DIGIT	12 / CEI //BUS	13 NTEF S, OH	A 14 R, CO IIO	A 15 DLUM	A 16 IBUS	6,
PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES date of dra	REV	PREPATOR THAT APPR	A ARED B' anh V. No	2 Y guyen guyen				-	7 TIT	DEF LE CROC	ENSE CIRCU BUFF	10 E SU CC	PPLY DLUM DIGIT	12 / CEI //BUS	13 NTEF S, OH	A 14 R, CO	A 15 DLUM	A 16 IBUS	5,
PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS	REV	PREPATOR THAT APPR	A 1 ARED B' anh V. No anh V. No oved B' omas M.	2 Y guyen guyen	3	4		-	TITI MIC OC' THE	DEF LE CROC	ENSE CIRCU BUFF	10 E SU CC	PPLY DLUM DIGIT	12 / CEI //BUS	13 NTEF S, OH	A 14 R, CO IIO	A 15 DLUM	A 16 IBUS	5,
PAGE REV PAGE REV STA OF PAGE Original d	ATUS ES date of dra	REV	PREPATHA	A 1 ARED B' anh V. No anh V. No oved B' omas M.	2 Y guyen guyen Y Hess	3	4		-	TITI MIC OC' THE	DEF LE CROC TAL I REE-	ENSE CIRCU BUFF	JIT, I	PPLY DLUM DIGIT AND I JTPL	12 / CEI //BUS	13 NTEF 5, OH HIGH DRIV	A 14 R, CO IIO	A 15 DLUM	A 16 IBUS	5,
PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES date of dra	REV	PREP. Tha CHEC Tha APPR Tho	A 1 ARED B' anh V. No anh V. No oved B' omas M.	2 Y guyen guyen Y Hess	3	4 O.		-	TITI MIC OC' THE	DEF LE CROC TAL I REE-	ENSI CIRCU BUFF STAT	JIT, I	PPLY DLUM DIGIT AND I JTPL	12 / CEI //BUS TAL, I LINE JTS,	13 NTEF 5, OH HIGH DRIV	A 14 R, CO IIO	A 15 DLUM	A 16 IBUS	5,

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance octal buffer and line driver with three-state outputs microcircuit, with an operating temperature range of -55°C to +125°C for device type 01 and -40°C to +125°C for device type 02.
- 1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturers PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

V62/03607	-	<u>01</u> 	X T	Ę
Drawing		Device type	Case outline	Lead finish
number		(See 1.2.1)	(See 1.2.2)	(See 1.2.3)

1.2.1 Device type(s).

Device type	<u>Generic</u>	Circuit function
01	74HC244-EP	Octal buffer and line driver with three-state outputs
02	74HC244-EP	Octal buffer and line driver with three-state outputs

1.2.2 Case outline(s). The case outlines shall be as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
X	20	MS-013 MO-153	Plastic small-outline package Plastic small-outline package

1.2.3 Lead finishes. The lead finishes shall be as specified below or other lead finishes as provided by the device manufacture:

Finish designator	<u>Material</u>
A	Hot solder dip
B	Tin-lead plate
C	Gold plate
D	Palladium
E	Gold flash palladium

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 2

1.3 Absolute maximum ratings. 1/

Supply voltage range (V _{CC})	0.5 V to 7.0 V
Input clamp current (I_{IK}) ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA 2/
Output clamp current (I _{OK}) (V _O < 0 or V _O > V _{CC})	
Continuous output current (I _O) (V _O = 0 to V _{CC})	
Continuous current through V _{CC} or GND	
Storage temperature range (T _{STG})	
Package thermal impedance (θ_{JA}) : 3/	
X package	58°C/W
Y package	
1 3 .	
1.4 Recommended operating conditions. 4/	
	
Supply voltage range (V _{CC})	
Input voltage range (V _I)	
Output voltage range (V _O)	0.0 V to V _{CC}
Minimum high level input voltage (V _{IH}):	
V _{CC} = 2.0 V	1.5 V
$V_{CC} = 4.5 \text{ V}$	
$V_{CC} = 6.0 \text{ V}$	4.2 V
Minimum low level input voltage (V _{IL}):	
V _{CC} = 2.0 V, 4.5 V, and 6.0 V	0.0 V
Maximum low level input voltage (V _{IL}):	0.51/
V _{CC} = 2.0 V	
V _{CC} = 4.5 V	
$V_{CC} = 6.0 \text{ V}$	1.8 V
Minimum input transition rise or fall time (t _t):	0.0
$V_{CC} = 2.0 \text{ V}$, 4.5 V, and 6.0 V	0.0 ns
Maximum input transition rise or fall time (t _t):	1000 no
$V_{CC} = 2.0 \text{ V}$	1000 IIS

2. APPLICABLE DOCUMENTS

Operating free-air temperature range (T_A) :

JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices

 $V_{CC} = 4.5 \text{ V}$ 500 ns $V_{CC} = 6.0 \text{ V}$ 400 ns

JEDEC STD 51-7 - High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages

(Applications for copies should be addressed to the Electronic Industries Alliance, 2500 Wilson Boulevard, Arlington, VA 22201-3834 or at http://www.jedec.org).

^{4/} Use of this product beyond the manufacturers design rules or stated parameters is done at the user's risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 3

Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2/} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{3/} The package thermal impedance is calculated in accordance with JESD 51-7.

3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
 - A. Manufacturer's name, CAGE code, or logo
 - B. Pin 1 identifier
 - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
 - 3.4 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions are as specified herein.
 - 3.5 Diagrams.
 - 3.5.1 Case outline(s). The case outline(s) shall be as shown in 1.2.2 and figure 1.
 - 3.5.2 <u>Truth table</u>. The truth table shall be as shown in figure 2.
 - 3.5.3 Logic diagram. The logic diagram shall be as shown in figure 3.
 - 3.5.4 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 4.
 - 3.5.5 <u>Test circuit and timing waveforms</u>. The test circuit and timing waveforms shall be as shown in figure 5.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 4

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions	V _{CC}	Temperature, T_A	Device type	Lir	nits	Unit
						Min	Max	
High level output	V _{OH}	$V_I = V_{IH} \text{ or } V_{IL} \underline{1}/$	2.0 V	<u>2</u> /	All	1.9		V
voltage		I _{OH} = -20 μA	4.5 V			4.4		
			6.0 V			5.9		
		$V_I = V_{IH} \text{ or } V_{IL} \underline{1}/$	4.5 V	25°C		3.98		
		I _{OH} = -6 mA		<u>3</u> /		3.7		
		$V_I = V_{IH} \text{ or } V_{IL} \underline{1}/$	6.0 V	25°C		5.48		
		I _{OH} = -7.8 mA		<u>3</u> /]	5.2		
Low level output	V _{OL}	$V_I = V_{IH} \text{ or } V_{IL} \underline{1}/$	2.0 V	<u>2</u> /	All		0.1	V
voltage		I _{OL} = 20 μA	4.5 V				0.1	
			6.0 V				0.1	
		$V_I = V_{IH} \text{ or } V_{IL} \underline{1}/$	4.5 V	25°C			0.26	
		I _{OL} = 6 mA		<u>3</u> /			0.4	
		$V_I = V_{IH} \text{ or } V_{IL} \underline{1}/$	6.0 V	25°C			0.26	-
		I _{OL} = 7.8 mA		<u>3</u> /			0.4	
Input current	I _I	$V_I = V_{CC}$ or 0 V	6.0 V	25°C	All		±0.1	μΑ
				<u>3</u> /			±1.0	
Three-state output	l _{OZ}	$V_I = V_{IH} \text{ or } V_{IL} \underline{1}$	6.0 V	25°C	All		±0.5	μА
leakage current		$V_0 = V_{CC} \text{ or } 0 \text{ V}$		<u>3</u> /			±10.0	
Quiescent supply	Icc	$V_I = V_{CC}$ or 0 V	6.0 V	25°C	All		8.0	μА
current		I _O = 0 A		<u>3</u> /	1		160.0	_
Input capacitance	Cı		2.0 V to 6.0 V	<u>2</u> /	All		10	pF
Power dissipation capacitance per buffer/driver	C _{PD}	No load		25°C	All	35 ty	/pical	pF

See footnotes at end of table.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 5

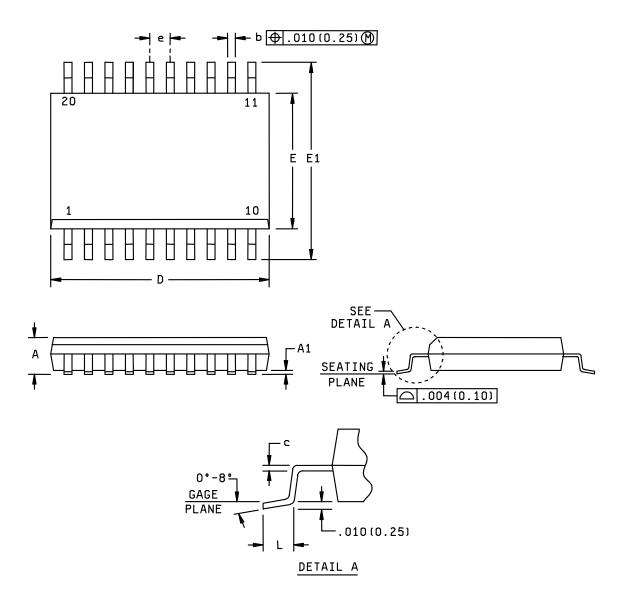
TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions	V _{cc}	Temperature, T_A	Device type	Limits		Unit
						Min	Max	
Propagation delay	t _{pd}	C _L = 50 pF	2.0 V	25°C	All		115	ns
time, A to Y		See figure 5		<u>3</u> /			170	
			4.5 V	25°C			23	
				<u>3</u> /			34	
			6.0 V	25°C			20	
				<u>3</u> /			29	
		C _L = 150 pF	2.0 V	25°C			165	
		See figure 5		<u>3</u> /			245	-
			4.5 V	25°C			33	
				<u>3</u> /			49	
			6.0 V	25°C			28	
				<u>3</u> /			42	
Propagation delay	t _{en}	C _L = 50 pF	2.0 V	25°C	All		150	ns
time, output enable, OE to Y		See figure 5		<u>3</u> /			225	
			4.5 V	25°C			30	
				<u>3</u> /			45	
			6.0 V	25°C			26	
				<u>3</u> /			38	
		C _L = 150 pF	2.0 V	25°C			200	
		See figure 5		<u>3</u> /	1		300	
			4.5 V	25°C			40	
				<u>3</u> /			60	
			6.0 V	25°C			34	
				<u>3</u> /	1		51	

See footnotes at end of table.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 6

TABLE I. <u>Electrical performance characteristics</u> - Continued.


Test	Symbol	Conditions	V _{CC}	Temperature, T _A	Device type	Lir	nits	Unit
						Min	Max	
Propagation delay	t _{dis}	C _L = 50 pF	2.0 V	25°C	All		150	ns
time, output disable, OE to Y		See figure 5		<u>3</u> /			225	
			4.5 V	25°C			30	
				<u>3</u> /			45	
			6.0 V	25°C			26	
				<u>3</u> /			38	
Output transition	Output transition t _t	See figure 5	2.0 V	25°C	All		60	ns
time				<u>3</u> /			90	
			4.5 V	25°C			12	
				<u>3</u> /			18	
	6.0 V	25°C		10				
				<u>3</u> /			15	
		C _L = 150 pF	2.0 V	25°C			210	
		See figure 5		<u>3</u> /			315	
			4.5 V	25°C			42	
				<u>3</u> /			63	
			6.0 V	25°C			36	1
				<u>3</u> /			53	

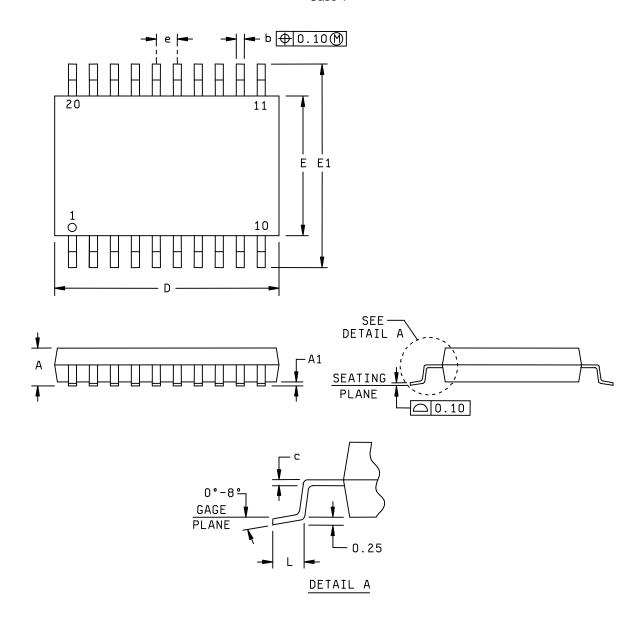
 $[\]underline{1}/$ The values to be used for V_{IH} and V_{IL} shall be the V_{IH} minimum and V_{IL} maximum values listed in section 1.4 herein.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 7

 $[\]underline{2}$ / $T_A = 25$ °C, -55°C to 125°C for device type 01; $T_A = 25$ °C, -40°C to 125°C for device type 02.

 $[\]underline{3}/\quad T_A = -55^{\circ}C$ to 125°C for device type 01 ; $T_A = -40^{\circ}C$ to 125°C for device type 02.

- All linear dimensions are in inches (millimeters).
 This case outline is subject to change without notice.
- 3. Body dimensions do not include mold flash or protrusion, not to exceed .006 inches (0.15 millimeters).
- 4. Fall within JEDEC MS-013.


FIGURE 1. Case outlines.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV	PAGE 8

	Dimensions			
Symbol	Incl	hes	Millim	neters
	Min	Max	Min	Max
А		.104		2.65
A1	.004	.012	0.10	0.30
b	.014	.020	0.35	0.51
С	.010	NOM	0.25 NOM	
D	.500	.510	12.70	12.95
E	.291	.299	7.39	7.59
E1	.400	.419	10.15	10.65
е	.050 BSC		1.27	BSC
L	.016	.050	0.40	1.27

FIGURE 1. <u>Case outlines</u> - Continued.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV	PAGE 9

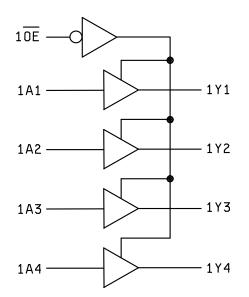
NOTES:

- 1. All linear dimensions are in millimeters.
- 2. This case outline is subject to change without notice.
- 3. Body dimensions do not include mold flash or protrusion, not to exceed 0.15 millimeters.
- 4. Fall within JEDEC MO-153.

FIGURE 1. Case outlines - Continued.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 10

	Dimensions		
Symbol	Millimeters		
	Min	Max	
А		1.20	
A1	0.05	0.15	
b	0.19	0.30	
С	0.15 NOM		
D	6.40	6.60	
Е	4.30	4.50	
E1	6.20	6.60	
е	0.65 BSC		
L	0.50	0.75	


FIGURE 1. <u>Case outlines</u> - Continued.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 11

Each buffer/driver				
Inp	Output			
ŌĒ	А	Y		
L	Н	Н		
L	L	L		
Н	X	Z		

H = High voltage level L = Low voltage level Z = High impedance X = Don't care

FIGURE 2. <u>Truth table</u>.

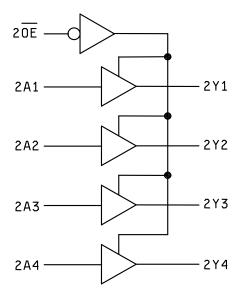
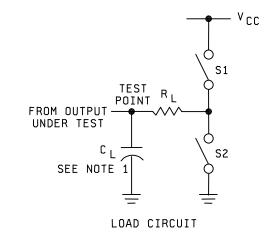


FIGURE 3. Logic diagram.


DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 12

Device type	All
Case outlines	X and Y
Terminal number	Terminal symbol
1	1 OE
2	1A1
3	2Y4
4	1A2
5	2Y3
6	1A3
7	2Y2
8	1A4
9	2Y1
10	GND
11	2A1
12	1Y4
13	2A2
14	1Y3
15	2A3
16	1Y2
17	2A4
18	1Y1
19	2 OE
20	V _{CC}

FIGURE 4. <u>Terminal connections</u>.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 13

PAR	AMETER	RL	СГ	S1	S2
+	t _{PZH}	1 kΩ	50 ρF or	OPEN	CLOSED
t _{en}	^t PZL		1 K77	150 pF	CLOSED
t _{dis}	^t PHZ	1 kΩ	kΩ 50 pF	OPEN	CLOSED
ais	^t PLZ		30 рі	CLOSED	OPEN
tpd	or t _t	_	50 pF or 150 pF	OPEN	OPEN

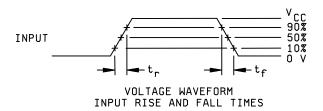
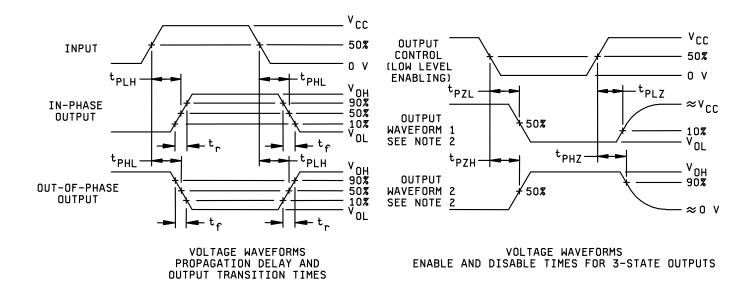



FIGURE 5. Test circuit and timing waveforms.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 14

NOTES:

- 1. C_L includes probe and test-fixture capacitance.
- 2. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 3. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 6 ns, t_f = 6 ns.
- 4. The outputs are measured one at a time with one input transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as t_{dis}; t_{PZL} and t_{PZH} are the same as t_{en}; t_{PLH} and t_{PHL} are the same as t_{od}.

FIGURE 5. Test circuit and timing waveforms - Continued.

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 15

4.0 QUALITY ASSURANCE PROVISIONS

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5.0 PREPARATION FOR DELIVERY

- 5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.
 - 6.0 NOTES
 - 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number	Top side marking
V62/03607-01XE	01295	SN74HC244MDWREP	HC244MEP
V62/03607-02XE	01295	SN74HC244QDWREP	SHC244EP
V62/03607-02YE	01295	SN74HC244QPWREP	SHC244EP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code Source of supply

01295 Texas Instruments, Inc.

Semiconductor Group 8505 Forest Lane P.O. Box 660199 Dallas, TX 75243

Point of contact: U.S. Highway 75 South P.O. Box 84, M/S 853

Sherman, TX 75090-9493

DEFENSE SUPPLY CENTER, COLUMBUS	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/03607
		REV A	PAGE 16